530 research outputs found

    Motion Planning in Urban Environments: Part I

    Get PDF
    We present the motion planning framework for an autonomous vehicle navigating through urban environments. Such environments present a number of motion planning challenges, including ultra-reliability, high-speed operation, complex inter-vehicle interaction, parking in large unstructured lots, and constrained maneuvers. Our approach combines a model-predictive trajectory generation algorithm for computing dynamically-feasible actions with two higher-level planners for generating long range plans in both on-road and unstructured areas of the environment. In this Part I of a two-part paper, we describe the underlying trajectory generator and the on-road planning component of this system. We provide examples and results from ldquoBossrdquo, an autonomous SUV that has driven itself over 3000 kilometers and competed in, and won, the Urban Challenge

    Pecularities of Hall effect in GaAs/{\delta}<Mn>/GaAs/In\timesGa1-\timesAs/GaAs (\times {\approx} 0.2) heterostructures with high Mn content

    Full text link
    Transport properties of GaAs/{\delta}/GaAs/In\timesGa1-\timesAs/GaAs structures containing InxGa1-xAs (\times {\approx} 0.2) quantum well (QW) and Mn delta layer (DL) with relatively high, about one Mn monolayer (ML) content, are studied. In these structures DL is separated from QW by GaAs spacer with the thickness ds = 2-5 nm. All structures possess a dielectric character of conductivity and demonstrate a maximum in the resistance temperature dependence Rxx(T) at the temperature {\approx} 46K which is usually associated with the Curie temperature Tc of ferromagnetic (FM) transition in DL. However, it is found that the Hall effect concentration of holes pH in QW does not decrease below TC as one ordinary expects in similar systems. On the contrary, the dependence pH(T) experiences a minimum at T = 80-100 K depending on the spacer thickness, then increases at low temperatures more strongly than ds is smaller and reaches a giant value pH = (1-2)\cdot10^13 cm^(-2). Obtained results are interpreted in the terms of magnetic proximity effect of DL on QW, leading to induce spin polarization of the holes in QW. Strong structural and magnetic disorder in DL and QW, leading to the phase segregation in them is taken into consideration. The high pH value is explained as a result of compensation of the positive sign normal Hall effect component by the negative sign anomalous Hall effect component.Comment: 19 pages, 6 figure

    Individual within International Law

    Full text link
    Within international legal order the individual has decisively overcome the rigid frames of the status of interstate obligations beneficiary. Up to date private persons are autonomous participants of international relations by means of the fulfillment of the international rights and duties, by protecting them and even by affecting the international law formation.Статус индивида в международном праве давно преодолел узкие рамки бенефициара межгосударственных договоренностей. Сегодня личность является полноценным участником международных отношений, не только самостоятельно реализуя и защищая свои права, но и решительно влияя на международное нормотворчество

    Structural and transport properties of GaAs/delta<Mn>/GaAs/InxGa1-xAs/GaAs quantum wells

    Full text link
    We report results of investigations of structural and transport properties of GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn layer, separated from the QW by a 3 nm thick spacer. The structure has hole mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher than in known ferromagnetic two-dimensional structures. The analysis of the electro-physical properties of these systems is based on detailed study of their structure by means of high-resolution X-ray diffractometry and glancing-incidence reflection, which allow us to restore the depth profiles of structural characteristics of the QWs and thin Mn containing layers. These investigations show absence of Mn atoms inside the QWs. The quality of the structures was also characterized by photoluminescence spectra from the QWs. Transport properties reveal features inherent to ferromagnetic systems: a specific maximum in the temperature dependence of the resistance and the anomalous Hall effect (AHE) observed in samples with both "metallic" and activated types of conductivity up to ~100 K. AHE is most pronounced in the temperature range where the resistance maximum is observed, and decreases with decreasing temperature. The results are discussed in terms of interaction of 2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations related to random distribution of Mn atoms. The AHE values are compared with calculations taking into account its "intrinsic" mechanism in ferromagnetic systems.Comment: 15 pages, 9 figure

    The Design Optimization and Experimental Investigation of the 4.4 μm Raman Laser Basedon Hydrogen-filled Revolver Silica Fiber

    Get PDF
    Optical properties of hollow-core revolver fibers are numerically investigated depending on various parameters: the hollow-core diameter, the capillary wall thickness, the values of the minimum gap between the capillaries, the number of capillaries in the cladding and the type of glass (silica and chalcogenide). Preliminary, similar calculations are made for simple models of hollow-core fibers. Based on the obtained results, the optimal design of the revolver fiber for Raman laser frequency conversion (1.56 μm → 4.4 μm in 1H2) was determined. As a result, efficient ns-pulsed 4.42 μm Raman laser based on 1H2-filled revolver silica fiber is realized. Quantum efficiency as high as 36 % is achieved and output average power as high as 250 mW is demonstrated
    corecore